
1 

 

Appendix  A                                                                                                                            
Presentation at  SECAN-Lab  Meeting   Dagstuhl    10th and 11th December 2018 
(with minor modifications and extensions, worked out for the reader) 

A few probability considerations concerning the repetitions on 32-bit RN 
A useful test for checking produced Random Numbers consists in searching the first repetition in the 
produced string. This test was first presented by Gil, Gonnet and Petersen (A Repetition Test for Pseudo-
Random Number Generators, Monte Carlo Methods and Appl. Vol. 12, No 5-6, pp. 385-393 / 2006).  
As reported in the original paper, the authors executed only three times 100 cases for every RNG under 
test, and calculated the average of these 300 test-cases. In our opinion this is absolutely inaccurate to 
get a revelatory result. That’s the reason why we increased the number of cases to 100 billion, and 
included the calculation on the probability of the run-length per case. 
After detecting the first repetition, we store the quantity of produced Random Numbers (the run-
length), the position in the string of the identical value to the repetition, the value of the repetition, and 
start the next search. On average we will need near 82’138 different Random Numbers (32-bit integers) 
before we encounter the first repetition. For a better understanding we illustrate with the following 
example: 
The RNG under test produces the following random numbers 
12589,  8419, 42973,   415,  1824,  61845, 72492, 64821, 42973 
 No 1   No 2   No 3   No 4   No 5    No 6   No 7   No 8   No 9 

- 9  is the run-length, as 42973 is the first repetition (of the No 3) 
- 3  is the position in the string of the identical value to the repetition 
- 42973 is the value of the repetition 

 
For all of the 100 billion cases we dispose of these three values, memorized in the order of their 
appearance. This huge amount of data allows very extensive statistics about the RNG on test.  
But be aware:  As the correct generator for the production of 32-bit random numbers has no memory 
concerning the generated numbers, the second number may be the same as the first, and the search 
may end at the run-length of two. In contrast, if we do some 100 billion runs, it is possible in practice to 
find a case with the run-length of 460’000 or above.1). If we have stored these 100 billion different cases, 
we may calculate how many cases with run-length 2, 3, 4, … up to the maximal run-length encountered. 
Theoretically it is not excluded that we encounter a case that excels even a run-length of 2’100’000, as 
the p-value (from 0 to 1 for always) for the run-length from 2 to 2’100’000 is not exactly 1. As we shall 
see later, the p-value therefore starts with 222 ‘9’ after the decimal-point, so don’t worry! 
To do calculations about the probability and the numbers encountered, we need a table with the p-
values per run-length. As a programmer I will not start to work with long formulas, but I do it in a logical 
way, calculating step by step with a very good precision2). For these purposes I am using for 30 Years the 
bc from Xenix, Unix, and now from Linux. bc stands for “Basic calculator”, an arbitrary-precision 
calculator language 3), introduced a long time ago by the Unix programmers for their own use. 
With a text-editor we write the following bc-program: 4) 

 
scale = 230 
expecval=0 
ptot=0 
pnot=1 
pyes=0 
b=2^32 
 for (i=0; i<2100000; i=i+1) 
  {pyes=i/b 
   pyes=pyes*pnot 
   ptot=ptot+pyes 



2 

 

   expecval=expecval+((i+1)*pyes) 
   pnot=pnot*((b-i)/b) 
   print "p[",i+1,"]= ",pyes,"\n" 
   print "t[",i+1,"]= ",ptot,"\n" 
  } 
print "\n/* Number of trials: */\nn = ",i,"\n\n" 
print "/* Expected Value: */\nptot = ",expecval,"\n\n" 
print "/* Last pnot: */\npnot = ",pnot,"\n\n" 
quit 

After typing in this program in the file “repet32.bc”, we run the calculation and direct the result into the 
file “repet32-230dec_bis_2100000.bcx” 
n81:/o # time bc repet32.bc > repet32-230dec_bis_2100000.bcx 

real 1m36,453s 
user 1m22,689s 
sys 0m12,838s 

For calculating the probability in 2.1 million cycles, every cycle with three multiplications and one 
division with the precision of 230 decimals, we needed 1 minute and 36 seconds!  
The file produced: 
n81: /o # l *230dec* 

-rw-r--r-- 1 root root 1047777896  9 jun 18:13 repet32-230dec_bis_2100000.bcx 

(I use the suffix .bcx for textfiles ready to serve as input to the bc program) 
 
Let’s take a look to the end of the file: 
p[2100000]= .0000000000000000000000000000000000000000000000000000000\ 
00000000000000000000000000000000000000000000000000000000000000000000\ 
00000000000000000000000000000000000000000000000000000000000000000000\ 
000000000000000000000000000000000004898 

t[2100000]= .9999999999999999999999999999999999999999999999999999999\ 
99999999999999999999999999999999999999999999999999999999999999999999\ 
99999999999999999999999999999999999999999999999999999999999999999999\ 
999999999999999999999999999999987886448 
/* Number of trials: */ 
n = 2100000 
/* Expected Value: */ 
 ptot = 82137.861971368955568685051288766922397675686166540131869069\ 
00647517014174222327104971548616452342498172020465735021030669718070\ 
56392826059475265718821948877463868903010027078582018493953365515193\ 
1500573839602698058934660664591370685930 
/* Last pnot: */ 
 pnot = .00000000000000000000000000000000000000000000000000000000000\ 
00000000000000000000000000000000000000000000000000000000000000000000\ 
00000000000000000000000000000000000000000000000000000000000000000000\ 
00000000000000000000000000010013560 
 
The p-value to encounter the first repetition after the position 2’100’000 is very small. The total of all p-
values begins with 222 times 9 after the decimal-point. Considering this, we may conclude that it is 
possible to trust at least the first 210 decimals of the expected value (ptot), without any calculation 
about the error dimension 5). In the original paper a value of 82’138 without decimals is indicated.   
If we want to know the highest probability of all cases, we load the table with the program bc: 
 
n81: /o # bc repet32-230dec_bis_2100000.bcx 
bc 1.07.1 



3 

 

Copyright 1991-1994, 1997, 1998, 2000, 2004, 2006, 2008, 2012-2017 Free Software 
Foundation, Inc. 
This is free software with ABSOLUTELY NO WARRANTY. 
For details type `warranty'.  
 
Then we have to type the following line: 
for (i=2;i<2100000;i++) if (p[i]>p[i-1]) j=i 
 
By typing   j   we get the result: 65537 
Let’s check in the file: 
 
p[65536]= .000009254970467792653084218040659856335334425431237969552\ 
61086703504914989035009984507884125075454350550977062558847757759803\ 
92685975591151881868286477583190011229936657105059081938575816073571\ 
3019083310645872797059091832851452255 
t[65536]= .393466255281518890451359668299586837036235468877090996066\ 
30080766853459040816767902735222850184663820817788134547937232268246\ 
20918800011696733538374539867197237129403845709727213968623080895855\ 
2658312372486099472203647296559888480 
p[65537]= .000009254970469947526695993657405096636397762520311323684\ 
75240629871111244826647693360859142717740102175585666074607117656978\ 
32876267718505680897010217673647045940595559633701938976837636976915\ 
0412709681512871000679440251963858643 
t[65537]= .393475510251988837978055661956991933672633231397402319751\ 
05321396724570285643415596096081992902403922993373800622544349925224\ 
53795067730202414435384757540844283069999405343429152945460717872770\ 
3071022053998970472883087548523747123 
p[65538]= .000009254970467792685964478218481485876171592771055621198\ 
41819517908530044797153628308344318315952819575112961060653580425060\ 
10983126618118529609489521987071504278159803116920405925159205994785\ 
9431273265375673554249135465615273545 
t[65538]= .393484765222456630664020140175473419548804824168457940949\ 
47140914633100330440569224404426311218356742568486761683197930350284\ 
64778194348320944044874279527915787348159208460349558870619923867556\ 
2502295319374644027132223014139020668 
 
As I stated in the beginning, it is possible to encounter a case with a run-length of only two Random 
Numbers, that means that two identical 32-bit Random Numbers appear without any other between. 
Let’s use the term “double” for this case. Considering the probability of 1 out of 232 (4’294’967’296), we 
expect in 100’000’000’000 runs only a total of 23,28306436… cases.  
 
Knowing the number of our test-cases (100 bill.) and the average run-length of a case (ptot), we may 
calculate the total number of expected doubles.  
 
To limit ptot to the trusted value we truncate to 210 decimals: 
scale=210 
ptot=ptot/1   /* to cut the last 20 digit */ 
scale=230    /* to get a better precision */ 
totrn=ptot*100000000000 
totrn 

8213786197136895.556868505128876692239767568616654013186906900647517\ 
01417422232710497154861645234249817202046573502103066971807056392826\ 
05947526571882194887746386890301002707858201849395336551519315005738\ 
39602698058900000000000 
totrn=totrn-1 /* we have to substract one, as the first can’t be a double */ 
totrn 



4 

 

8213786197136894.556868505128876692239767568616654013186906900647517\ 
01417422232710497154861645234249817202046573502103066971807056392826\ 
05947526571882194887746386890301002707858201849395336551519315005738\ 
39602698058900000000000 
Now we consider those Random Numbers as a unique string.   
 
doubles_a = totrn * (1/2^32)  
doubles_a 

1912421.127114653251336073765735303107594970757293983638963406124971\ 
11181128358633838862846988540666600969165231450950509629167396666674\ 
42290933470214296804681976067438023795340722857368024194501180901596\ 
8805241818979848176240921020507812 
 

That’s the expected number of doubles; but where are the missing doubles? 
 
By definition there are no doubles possible before the first repetition. But in fact, the first repetition 
may form with the previous Random Number a double. For a run-length of two, the p-value is 1, and for 
a run-length of 50’000, the p-value is only 1/49’999, as the first repetition may be the same as any of the 
49’999 different numbers. 
Now we may calculate the average probability for doubles by integrating the different probabilities for 
the specific run-lengths from 2 to 2’100’000 divided by the decreased probability to get a double with 
the first repetition and the number just before.  
Let’s say immediately, after this calculation we still miss around 23 doubles! Where to find?  
We have to consider also the case of a double between the first repetition and the first number of the 
next beginning. For 100 billion cases we have to count 99’999’999’999 cases, as there is no possibility 
after the last run. Again, the probability is 1 out of 4’294’967’296 cases. 
If we have not yet left the bc program with the probability table, we calculate first the probability for a 
double per case : 
 
scale=230 
for (i=2;i<2100001;i=i+1) s+=(p[i]/(i-1)) 
s 
.0000191239784405028809720382679460493201384497075729398363896340612\ 
49711118112835863383886284698854066660096916523145095050962916739666\ 
66744229093347021429680468197606743802379534072285736802419450118090\ 
159688052418189806550787251 

The value s being the probability per case, we need to multiply s with 100 billion, and to add the 
expected number of doubles formed by the repetition and the beginning of the next run in 
99’999’999’999 possible cases: 
  
doubles_b = (100000000000 *s) + (99999999999*1/2^32) 
doubles_b 

1912421.127114653251336073765735303107594970757293983638963406124971\ 
11181128358633838862846988540666600969165231450950509629167396666674\ 
42290933470214296804681976067438023795340722857368024194501180901596\ 
8805241818980655078725100000000000 
 
This is the expected number of doubles, calculated alternatively on the base of the number of cases plus 
the probability to have the repetition and the first of the next run as double. 
 
We compare the result double_a with the result double_b, and we find them identical up to the 207. 
decimal. 



5 

 

 
Control: 
 
scale=207 
doubles_a = doubles_a / 1   /* to reduce the decimals */ 
doubles_b = doubles_b / 1 

doubles_a – doubles_b 
 
0 
 
The result being the same with method a as with method b, we have demonstrated that first our 
average is correct, and second that our calculated probability table is correct as well. If we forget, in the 
first calculation, to deduct one from the 8.2137 million billion, a difference from up the tenth decimal 
should appear.  
 
Thank You for listening    /    Alain Schumacher 
 
___________________________________________________________________________________ 

 
1) If we do 100 billion times this test, the computed expectation to find cases with run-length 460’000 or 

above is 2.001962… cases, and only at 466’436 and above the expectation became smaller then 1 case,  
0.99960056977… are expected.  

2) As I am not a mathematician, I try first to approach a given problem with an ordinary logic. My goal being 
to compute the table with the expected probabilities, I have only to consider the following facts: After 
producing the first random value, of course no double is possible. After the generation of the second 
value, the probability to obtain the same value is one-to-2exp32. For the third and the followings, the 
probability increases with the number of different values produced before (n-to-2exp32), but is reduced 
by the probability that this cycle was already finished before. This way I feel more comfortable to 
program the job, as I use bc from LINUX, and no special software for mathematician. 
I guess that mathematicians will now start to laugh at such an approach, but may I ask them to take a look 
at the book “ars conjectandi 1713” from Jacob Bernoulli. They will see that there is no difference between 
his style of describing the probability problems and mine. As Jakob Bernoulli is considered as an eminent 
mathematician, I feel free to extend his research with the possibilities of modern HPC equipment. 

       3)    For more details on bc see the article “bc (programming language)” in the English Wikipedia. 
4) You need a version, like GNU bc, which supports more than one character for variable names. If not 

available, you may take different characters for every different variable. 
5)  To control the correctness of our estimation, we compared the result of ptot with 230 decimals up to 

2’100’000 cases, against a file calculated with 600 decimals up to 3’400’000 cases. Both results for ptot 
are identical on the first 216 decimals. 


